首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16129篇
  免费   2108篇
  国内免费   1256篇
电工技术   864篇
综合类   878篇
化学工业   2778篇
金属工艺   3195篇
机械仪表   723篇
建筑科学   84篇
矿业工程   162篇
能源动力   408篇
轻工业   1261篇
水利工程   10篇
石油天然气   168篇
武器工业   176篇
无线电   2901篇
一般工业技术   2647篇
冶金工业   1150篇
原子能技术   1488篇
自动化技术   600篇
  2024年   35篇
  2023年   351篇
  2022年   556篇
  2021年   701篇
  2020年   668篇
  2019年   672篇
  2018年   646篇
  2017年   706篇
  2016年   641篇
  2015年   646篇
  2014年   840篇
  2013年   1079篇
  2012年   1064篇
  2011年   1224篇
  2010年   849篇
  2009年   948篇
  2008年   875篇
  2007年   1171篇
  2006年   1042篇
  2005年   829篇
  2004年   771篇
  2003年   613篇
  2002年   444篇
  2001年   384篇
  2000年   304篇
  1999年   246篇
  1998年   188篇
  1997年   177篇
  1996年   156篇
  1995年   115篇
  1994年   101篇
  1993年   101篇
  1992年   78篇
  1991年   59篇
  1990年   38篇
  1989年   39篇
  1988年   22篇
  1987年   11篇
  1986年   10篇
  1985年   12篇
  1984年   6篇
  1983年   4篇
  1982年   32篇
  1981年   20篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1959年   3篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
61.
LaPO4 powders were produced by a chemical co-precipitation and calcination method. The ceramic exhibited a monazite structure, kept phase stability at 1400?°C for 100?h, and had low thermal conductivity (~ 1.41?W/m?K, 1000?°C). LaPO4/Y2O3 partially stabilized ZrO2 (LaPO4/YSZ) double-ceramic-layer (DCL) thermal barrier coatings (TBCs) were fabricated by air plasma spray. The LaPO4 coating contained many nanozones. Thermal cycling tests indicated that the spallation of LaPO4/YSZ DCL TBCs initially occurred in the LaPO4 coating. The failure mode was similar to those of many newly developed TBCs, probably due to the low toughness of the ceramics. LaPO4/YSZ DCL TBCs were highly resistant to V2O5 corrosion. Exposed to V2O5 at 700–900?°C for 4?h, La(P,V)O4 formed as the corrosion product, which had little detrimental effect on the coating microstructure. At 1000?°C for 4?h, a minor amount of LaVO4 was generated.  相似文献   
62.
The current study evaluated exosomes isolated from plasma of heifers bred to have high or low fertility through developing extreme diversity in fertility breeding values, however, key animal traits (e.g., body weight, milk production, and percentage of North American genetics) remained similar between the 2 groups. The exosomes were isolated by a combined ultracentrifugation and size exclusion chromatography approach and characterized by their size distribution (nanoparticle tracking analysis), morphology (transmission electron microscopy), and presence of exosomal markers (immunoblotting). In addition, a targeted mass spectrometry approach was used to confirm the presence of 2 exosomal markers, tumor susceptibility gene 101 and flotillin 1. The number of exosomes from plasma of high fertility heifers was greater compared with low fertility heifers. Interestingly, the exosomal proteomic profile, evaluated using mass spectrometry, identified 89 and 116 proteins in the high and low fertility heifers respectively, of which 4 and 31 were unique, respectively. These include proteins associated with specific biological processes and molecular functions of fertility. Most notably, the tetratricopeptide repeat protein 41-related, glycodelin, and kelch-like protein 8 were identified in plasma exosomes unique to the low fertility heifers. These proteins are suggested to play a role in reproduction; however, the role of these proteins in dairy cow reproduction remains to be elucidated. Their identification underscores the potential for proteins within exosomes to provide information on the fertility status and physiological condition of the cow. This may potentially lead to the development of prognostic tools and interventions to improving dairy cow fertility.  相似文献   
63.
This work studied the effect of different annealing conditions of ZnO thin films grown by RF magnetron sputtering and their application as photocatalysts for hydrogen production without any sacrificial agent or co-catalyst. ZnO films were annealed in air, nitrogen, and argon atmospheres to study the effect of their physical properties in the photocatalytic activity. ZnO films showed high crystallinity and optical transparence of around 75–90% after annealing. Changes in composition and optical properties of the ZnO films were studied by x-ray photoelectron spectroscopy (XPS) and ellipsometry spectroscopy (SE), and results were correlated with the photocatalytic performance in hydrogen production. The highest photocatalytic hydrogen production was obtained with the ZnO thin film annealed in an air atmosphere with a result of 76 μmol.  相似文献   
64.
In this study, we demonstrate the fabrication of TiO2 photocatalytic electrode by sol-gel and electrospinning technique. The anatase TiO2 nanofiber is successfully formed after thermal annealing at 260°C. As-prepared TiO2 photocatalytic electrode contains surface contamination, which includes a polymer binder such as ethyl cellulose, carbon by carbonization of polyvinylpyrrolidone, and residue polyvinylpyrrolidone. To efficiently remove the surface contaminants from the TiO2 photocatalytic electrode, we employ an atmospheric-pressure O2 plasma jet and the exposure time is controlled by the scanning rate. As the results, photodegradation efficiency of methylene blue is significantly enhanced with a scanning rate in the range of 100-500 μm/s and was saturated with a scanning rate in the range of 10-100 μm/s.  相似文献   
65.
Zinc (Zn), the second-most necessary trace element, is abundant in the human body. The human body lacks the capacity to store Zn; hence, the dietary intake of Zn is essential for various functions and metabolism. The uptake of Zn during its transport through the body is important for proper development of the three major accessory sex glands: the testis, epididymis, and prostate. It plays key roles in the initial stages of germ cell development and spermatogenesis, sperm cell development and maturation, ejaculation, liquefaction, the binding of spermatozoa and prostasomes, capacitation, and fertilization. The prostate releases more Zn into the seminal plasma during ejaculation, and it plays a significant role in sperm release and motility. During the maternal, labor, perinatal, and neonatal periods, the part of Zn is vital. The average dietary intake of Zn is in the range of 8–12 mg/day in developing countries during the maternal period. Globally, the dietary intake of Zn varies for pregnant and lactating mothers, but the average Zn intake is in the range of 9.6–11.2 mg/day. The absence of Zn and the consequences of this have been discussed using critical evidence. The events and functions of Zn related to successful fertilization have been summarized in detail. Briefly, our current review emphasizes the role of Zn at each stage of human reproduction, from the spermatogenesis process to childbirth. The role of Zn and its supplementation in in vitro fertilization (IVF) opens opportunities for future studies on reproductive biology.  相似文献   
66.
In this work, MoAlB samples for plasma exposure test were condensed by spark plasma sintering at 1200 °C for 10 min. Ablation resistance of MoAlB ceramic was investigated in a plasma torch facility for about 30 s at high temperature range of ~1670?2550 °C, which provided a quasi-real hypersonic service environment. The results showed that the linear ablation rate was increased from 0 μm/s at ~1670 °C to 86.4 μm/s at ~2550 °C. At ~1670 °C, the ablated surface of MoAlB ceramic was covered by Al2O3 layer, presenting excellent ablation resistance. At ~2220 °C, the macroscopic cracks were induced by thermal stress, which opened up channels for the inward diffusion of oxygen and deteriorated the ablation resistance of the substrate. Above ~2400 °C, the volatile MoO3 and B2O3 and the erosion of viscous oxides by the high shearing force of plasma stream were the main ablation mechanisms.  相似文献   
67.
The catalyst has a significant role in gas processing applications such as reforming technologies for H2 and syngas production. The stable catalyst is requisite for any industrial catalysis application to make it commercially viable. Several methods are employed to synthesize the catalysts. However, there is still a challenge to achieve a controlled morphology and pure catalyst which majorly influences the catalytic activity in reforming applications. The conventional methods are expansive, and the removal of the impurities are major challenges. Nevertheless, it is not straightforward to achieve the desired structure and stability. Therefore, significant interest has been developed on the advanced techniques to take control of the physicochemical properties of the catalyst through non-thermal plasma (NTP) techniques. In this review, the systematic evolution of the catalyst synthesis using NTP technique is elucidated. The emerging DBD plasma to synthesized and effective surface treatment is reviewed. DBD plasma synthesized catalyst performance in reforming application for H2 and syngas production is summarised. Furthermore, the status of DBD plasma for catalyst synthesis and proposed future avenues to design environmentally suitable and cost-effective synthesis techniques are discussed.  相似文献   
68.
69.
To improve the quality of pre-combustion cracking gas, the gliding arc discharge plasma is adopted in this paper. The influence of incoming flow rate, electrode gap distance and discharge frequency on cracking effect have been experimentally studied. The results show that through plasma cracking, the concentration of H2 increases while the concentration of CH4 and C2H4 decrease. With different fuel ratio conditions, the variation trend of C/H ratio as well as the mass flow of carbon and hydrogen atoms in the cracking products vary from each other. The cracking effect becomes weaker with the increase of incoming flow rate, while is better when the fuel ratio is larger. Given the flow rate of 18slpm and 24slpm, the best cracking effect can be acquired with the electrode gap of 1.5 mm. Besides, the effect of gliding arc discharge plasma cracking is weakened as the discharge frequency rises.  相似文献   
70.
In this paper, an electronegative magnetized plasma sheath model with non-extensive electron distribution is established, and the Bohm criterion affected by the non-extensive parameter q is theoretically derived. The ion Mach number varies with q. The numerical simulation results show that compared with electronegative magnetized plasma sheath with Maxwell distribution (q = 1), the sheath structures with super-extensive distribution (q < 1) and sub-extensive distribution (q > 1) are different. The physical quantities including the sheath potential distribution, ion density distribution, the electron density distribution, negative ion density distribution and the net space charge density distribution are discussed. It is shown that the non-extensive parameter q has a significant influence on the structure of the electronegative magnetized plasma sheath. Due to the Lorentz force, both the magnitude and the angle of the magnetic field affect the structure of the sheath, whether the electrons are Maxwell distributed or non-extensively distributed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号